AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot


Jaehwan Jeong1,2, Tuan-Anh Vu2, Mohammad Jony3, Shahab Ahmad3,
Md. Mukhlesur Rahman3, Sangpil Kim1,†, and M. Khalid Jawed2,†

1Korea University 2UCLA 3North Dakota State University

Overview

Teaser
Experimental sites and remote operation interface. (Site 1) Main canola phenotyping site used for repeated data collection, capturing temporal changes in illumination and crop structure. (Site 2) Genotype trial site featuring diverse canola varieties, capturing morphological variation across crop types. (Site 3) Flax trial site comprising multiple plots with varying weed control strategies, offering structural diversity in a controlled multi-block layout. (Web UI) Remote interface supporting real-time system feedback, intuitive directory-based data saving, and low-latency teleoperation, ensuring high-quality data collection through consistent velocity and trajectory repeatability.


Abstract

Advances in AI and Robotics have accelerated significant initiatives in agriculture, particularly in the areas of robot navigation and 3D digital twin creation. A significant bottleneck impeding this progress is the critical lack of "in-the-wild" datasets that capture the full complexities of real farmland, including non-rigid motion from wind, drastic illumination variance, and morphological changes resulting from growth. This data gap fundamentally limits research on robust AI models for autonomous field navigation and scene-level dynamic 3D reconstruction. In this paper, we present AgriChrono, a modular robotic data collection platform and multi-modal dataset designed to capture these dynamic farmland conditions. Our platform integrates multiple sensors, enabling remote, time-synchronized acquisition of RGB, Depth, LiDAR, IMU, and Pose data for efficient and repeatable long-term data collection in real-world agricultural environments. We successfully collected 18TB of data over one month, documenting the entire growth cycle of Canola under diverse illumination conditions. We benchmark state-of-the-art 3D reconstruction methods on AgriChrono, revealing the profound challenge of reconstructing high-fidelity, dynamic non-rigid scenes in such farmland settings. This benchmark validates AgriChrono as a critical asset for advancing model generalization, and its public release is expected to significantly accelerate research and development in precision agriculture.
Figure 1
Robotic Platform
Figure 2
In-the-Wild Dataset
Figure 3
3D Reconstruction Benchmark
×


Novel View Synthesis Benchmark

We benchmark Novel View Synthesis on AgriChrono across seven scenarios characterized by Lighting Variance and Growth Span. Each scenario comprises 400 images (960×540) partitioned into 350 for training and 50 for testing. This benchmark assesses the robustness of methods against drastic illumination changes and morphological variations of non-rigid objects in unstructured outdoor environments.
Method (Click to view all 7 scenarios) PSNR ↑ SSIM ↑ LPIPS (VGG) ↓ Time GPU Mem.
3DGUT [CVPR '25] 25.096 0.6092 0.4945 7m 0s 6,315 MB
↳ 06:00 AM (Lighting Variance) 26.433 0.6915 0.4697 6m 35s 6,060 MB
↳ 11:00 AM (Lighting Variance) 22.860 0.5488 0.5058 6m 48s 6,630 MB
↳ 04:00 PM (Lighting Variance) 24.147 0.5906 0.4904 6m 41s 6,390 MB
↳ 09:00 PM (Lighting Variance) 27.813 0.7134 0.4465 6m 36s 5,976 MB
↳ Day 6 (Growth Span) 23.706 0.5130 0.5563 8m 2s 6,474 MB
↳ Day 13 (Growth Span) 24.856 0.5597 0.5259 7m 17s 6,448 MB
↳ Day 20 (Growth Span) 25.858 0.6477 0.4670 7m 3s 6,228 MB
Octree-GS [TPAMI '25] 27.103 0.7547 0.2670 13m 23s 5,578 MB
↳ 06:00 AM (Lighting Variance) 28.451 0.8009 0.2640 12m 59s 5,018 MB
↳ 11:00 AM (Lighting Variance) 24.402 0.7044 0.3007 13m 36s 5,748 MB
↳ 04:00 PM (Lighting Variance) 25.593 0.7269 0.2916 13m 1s 5,414 MB
↳ 09:00 PM (Lighting Variance) 29.716 0.8092 0.2429 13m 17s 5,526 MB
↳ Day 6 (Growth Span) 26.211 0.7098 0.2654 14m 50s 6,226 MB
↳ Day 13 (Growth Span) 27.669 0.7545 0.2499 13m 50s 6,042 MB
↳ Day 20 (Growth Span) 27.677 0.7771 0.2544 12m 11s 5,074 MB
gsplat [JMLR '25] 26.256 0.7094 0.3769 5m 15s 1,834 MB
↳ 06:00 AM (Lighting Variance) 27.242 0.7637 0.3758 4m 33s 1,596 MB
↳ 11:00 AM (Lighting Variance) 23.740 0.6630 0.3823 5m 51s 1,958 MB
↳ 04:00 PM (Lighting Variance) 25.012 0.6882 0.3932 5m 29s 2,064 MB
↳ 09:00 PM (Lighting Variance) 28.714 0.7827 0.3407 4m 34s 1,542 MB
↳ Day 6 (Growth Span) 25.431 0.6348 0.3989 5m 50s 2,094 MB
↳ Day 13 (Growth Span) 26.730 0.6977 0.3723 5m 43s 1,964 MB
↳ Day 20 (Growth Span) 26.922 0.7355 0.3752 4m 49s 1,620 MB
3D-MCMC [NeurIPS '24] 25.762 0.6491 0.5143 4m 56s 4,512 MB
↳ 06:00 AM (Lighting Variance) 27.053 0.7194 0.4917 4m 58s 4,992 MB
↳ 11:00 AM (Lighting Variance) 23.385 0.5886 0.5363 4m 22s 4,302 MB
↳ 04:00 PM (Lighting Variance) 24.667 0.6281 0.5223 4m 39s 4,310 MB
↳ 09:00 PM (Lighting Variance) 28.180 0.7370 0.4675 5m 4s 4,734 MB
↳ Day 6 (Growth Span) 24.556 0.5566 0.5902 5m 37s 4,436 MB
↳ Day 13 (Growth Span) 26.134 0.6349 0.4973 5m 5s 4,196 MB
↳ Day 20 (Growth Span) 26.357 0.6795 0.4948 4m 50s 4,612 MB
WildGaussians [NeurIPS '24] 13.873 0.4647 0.7445 1h 1m 28s 2,022 MB
↳ 06:00 AM (Lighting Variance) 7.298 0.4037 0.8073 59m 27s 2,034 MB
↳ 11:00 AM (Lighting Variance) 11.498 0.3847 0.8028 1h 0m 56s 1,832 MB
↳ 04:00 PM (Lighting Variance) 11.022 0.4061 0.8067 59m 46s 1,832 MB
↳ 09:00 PM (Lighting Variance) 8.158 0.4506 0.7798 58m 56s 1,846 MB
↳ Day 6 (Growth Span) 23.057 0.5129 0.6509 1h 6m 28s 2,310 MB
↳ Day 13 (Growth Span) 24.422 0.5812 0.6197 1h 5m 4s 2,268 MB
↳ Day 20 (Growth Span) 11.655 0.5140 0.7441 59m 39s 2,034 MB
GS-W [ECCV '24] 21.214 0.5884 0.5621 58m 32s 7,027 MB
↳ 06:00 AM (Lighting Variance) 20.338 0.6593 0.5430 58m 59s 6,888 MB
↳ 11:00 AM (Lighting Variance) 17.946 0.5033 0.6044 58m 59s 7,040 MB
↳ 04:00 PM (Lighting Variance) 20.337 0.5588 0.5888 58m 48s 6,886 MB
↳ 09:00 PM (Lighting Variance) 22.819 0.7015 0.4949 58m 16s 6,848 MB
↳ Day 6 (Growth Span) 23.474 0.5186 0.5919 59m 9s 7,314 MB
↳ Day 13 (Growth Span) 23.616 0.5885 0.5392 58m 40s 7,330 MB
↳ Day 20 (Growth Span) 19.967 0.5889 0.5724 56m 57s 6,886 MB
H3DGS [SIGGRAPH '24] 26.758 0.7431 0.2573 38m 12s 8,602 MB
↳ 06:00 AM (Lighting Variance) 27.990 0.7939 0.2504 33m 11s 6,900 MB
↳ 11:00 AM (Lighting Variance) 24.412 0.7076 0.2620 43m 37s 10,584 MB
↳ 04:00 PM (Lighting Variance) 25.488 0.7204 0.2647 41m 34s 9,742 MB
↳ 09:00 PM (Lighting Variance) 29.330 0.8042 0.2371 31m 57s 6,320 MB
↳ Day 6 (Growth Span) 25.473 0.6680 0.2920 38m 59s 8,734 MB
↳ Day 13 (Growth Span) 27.260 0.7390 0.2511 40m 50s 9,430 MB
↳ Day 20 (Growth Span) 27.350 0.7685 0.2436 37m 18s 8,502 MB
3DGRT [SIGGRAPH Asia '24] 25.934 0.7100 0.3567 27m 52s 7,866 MB
↳ 06:00 AM (Lighting Variance) 26.702 0.7653 0.3477 22m 57s 7,200 MB
↳ 11:00 AM (Lighting Variance) 23.599 0.6616 0.3710 30m 39s 8,206 MB
↳ 04:00 PM (Lighting Variance) 24.733 0.6896 0.3751 28m 20s 8,034 MB
↳ 09:00 PM (Lighting Variance) 28.463 0.7828 0.3213 21m 50s 6,996 MB
↳ Day 6 (Growth Span) 25.317 0.6351 0.3847 31m 22s 8,450 MB
↳ Day 13 (Growth Span) 26.424 0.6986 0.3515 33m 59s 8,456 MB
↳ Day 20 (Growth Span) 26.301 0.7373 0.3458 25m 59s 7,722 MB
Taming3DGS [SIGGRAPH Asia '24] 26.777 0.7248 0.3541 4m 31s 6,016 MB
↳ 06:00 AM (Lighting Variance) 27.908 0.7756 0.3472 3m 47s 5,222 MB
↳ 11:00 AM (Lighting Variance) 24.342 0.6854 0.3579 5m 3s 5,914 MB
↳ 04:00 PM (Lighting Variance) 25.453 0.7012 0.3705 4m 31s 6,112 MB
↳ 09:00 PM (Lighting Variance) 29.179 0.7896 0.3245 3m 44s 5,342 MB
↳ Day 6 (Growth Span) 25.780 0.6533 0.3855 5m 19s 7,162 MB
↳ Day 13 (Growth Span) 27.241 0.7187 0.3495 5m 10s 6,714 MB
↳ Day 20 (Growth Span) 27.534 0.7495 0.3437 4m 7s 5,648 MB
Scaffold-GS [CVPR '24] 24.840 0.6930 0.3550 8m 25s 4,785 MB
↳ 06:00 AM (Lighting Variance) 25.542 0.7403 0.3649 7m 33s 4,450 MB
↳ 11:00 AM (Lighting Variance) 21.193 0.6280 0.3630 8m 36s 5,066 MB
↳ 04:00 PM (Lighting Variance) 24.661 0.6739 0.3766 7m 58s 4,646 MB
↳ 09:00 PM (Lighting Variance) 27.770 0.7743 0.3255 7m 21s 4,334 MB
↳ Day 6 (Growth Span) 24.816 0.6427 0.3445 9m 55s 5,428 MB
↳ Day 13 (Growth Span) 25.286 0.6887 0.3515 9m 35s 5,006 MB
↳ Day 20 (Growth Span) 24.612 0.7032 0.3587 8m 0s 4,564 MB
PGSR [TVCG '24] 25.610 0.6699 0.4543 7m 30s 4,770 MB
↳ 06:00 AM (Lighting Variance) 26.697 0.7429 0.4173 6m 53s 4,514 MB
↳ 11:00 AM (Lighting Variance) 23.673 0.6415 0.4212 8m 16s 5,148 MB
↳ 04:00 PM (Lighting Variance) 24.634 0.6610 0.4435 7m 41s 4,806 MB
↳ 09:00 PM (Lighting Variance) 28.277 0.7585 0.3931 6m 49s 4,510 MB
↳ Day 6 (Growth Span) 24.148 0.5459 0.6047 8m 16s 4,948 MB
↳ Day 13 (Growth Span) 25.236 0.6271 0.4952 7m 28s 4,822 MB
↳ Day 20 (Growth Span) 26.607 0.7122 0.4053 7m 13s 4,640 MB
3DGS [SIGGRAPH '23] 26.306 0.7177 0.3636 6m 43s 4,665 MB
↳ 06:00 AM (Lighting Variance) 27.107 0.7717 0.3565 6m 0s 4,480 MB
↳ 11:00 AM (Lighting Variance) 23.950 0.6742 0.3695 7m 0s 4,852 MB
↳ 04:00 PM (Lighting Variance) 24.970 0.6932 0.3862 6m 42s 4,646 MB
↳ 09:00 PM (Lighting Variance) 28.788 0.7884 0.3294 6m 5s 4,274 MB
↳ Day 6 (Growth Span) 25.449 0.6449 0.3867 7m 48s 5,090 MB
↳ Day 13 (Growth Span) 26.891 0.7097 0.3538 7m 22s 4,952 MB
↳ Day 20 (Growth Span) 26.987 0.7420 0.3633 6m 9s 4,364 MB
Zip-NeRF [ICCV '23] 28.264 0.7598 0.2455 4h 27m 45s 32,448 MB
↳ 06:00 AM (Lighting Variance) 29.582 0.7953 0.2518 4h 22m 33s 32,448 MB
↳ 11:00 AM (Lighting Variance) 25.923 0.7562 0.2003 4h 28m 42s 32,448 MB
↳ 04:00 PM (Lighting Variance) 27.466 0.7663 0.2027 4h 26m 45s 32,448 MB
↳ 09:00 PM (Lighting Variance) 30.675 0.8065 0.2368 4h 20m 20s 32,448 MB
↳ Day 6 (Growth Span) 25.943 0.6097 0.4169 4h 24m 37s 32,448 MB
↳ Day 13 (Growth Span) 28.844 0.7742 0.2164 4h 41m 43s 32,448 MB
↳ Day 20 (Growth Span) 29.418 0.8105 0.1936 4h 29m 36s 32,448 MB
Tetra-NeRF [ICCV '23] 26.713 0.6713 0.4296 17h 53m 4s 13,708 MB
↳ 06:00 AM (Lighting Variance) 28.225 0.7333 0.4292 16h 59m 19s 13,708 MB
↳ 11:00 AM (Lighting Variance) 24.057 0.6068 0.4915 17h 23m 24s 13,708 MB
↳ 04:00 PM (Lighting Variance) 25.564 0.6458 0.4765 18h 8m 2s 13,708 MB
↳ 09:00 PM (Lighting Variance) 29.337 0.7558 0.3908 17h 53m 47s 13,708 MB
↳ Day 6 (Growth Span) 25.324 0.5976 0.4025 16h 53m 12s 13,708 MB
↳ Day 13 (Growth Span) 27.096 0.6581 0.3926 19h 51m 29s 13,708 MB
↳ Day 20 (Growth Span) 27.388 0.7020 0.4241 18h 2m 14s 13,708 MB
NerfStudio [SIGGRAPH '23] 22.061 0.5288 0.5434 6m 53s 4,198 MB
↳ 06:00 AM (Lighting Variance) 23.703 0.6389 0.4891 7m 18s 4,198 MB
↳ 11:00 AM (Lighting Variance) 20.275 0.4353 0.5365 7m 22s 4,198 MB
↳ 04:00 PM (Lighting Variance) 21.573 0.5007 0.4977 7m 19s 4,198 MB
↳ 09:00 PM (Lighting Variance) 24.739 0.6555 0.4643 7m 10s 4,198 MB
↳ Day 6 (Growth Span) 22.133 0.4449 0.6376 6m 22s 4,198 MB
↳ Day 13 (Growth Span) 18.809 0.4454 0.6905 6m 21s 4,198 MB
↳ Day 20 (Growth Span) 23.194 0.5809 0.4882 6m 20s 4,198 MB
SeaThru-NeRF [CVPR '23] 23.485 0.5272 0.6709 11h 51m 45s 37,218 MB
↳ 06:00 AM (Lighting Variance) 25.371 0.6274 0.6273 11h 46m 32s 37,218 MB
↳ 11:00 AM (Lighting Variance) 21.421 0.4415 0.7049 11h 43m 27s 37,218 MB
↳ 04:00 PM (Lighting Variance) 22.885 0.4975 0.6810 11h 41m 39s 37,218 MB
↳ 09:00 PM (Lighting Variance) 26.456 0.6527 0.6079 11h 42m 38s 37,218 MB
↳ Day 6 (Growth Span) 22.691 0.4429 0.7129 11h 38m 1s 37,218 MB
↳ Day 13 (Growth Span) 21.488 0.4601 0.7162 12h 45m 41s 37,216 MB
↳ Day 20 (Growth Span) 24.084 0.5681 0.6460 11h 44m 23s 37,218 MB

Benchmark Qualitative Results I

We present the qualitative comparison results against the Ground Truth for Zip-NeRF and Octree-GS, which demonstrated the best performance among NeRF-based and Gaussian Splatting-based methods, respectively. For high-resolution image comparisons, please refer to the Supplementary Material.

Please note that all video playback is accelerated to 7× the actual robot speed and resized to 640 × 360.

📷 Click on video to play or pause. Move mouse to change the hover 📷

Scene Editing Results Comparison Slider


Benchmark Qualitative Results II

Following the top performers, we present the qualitative results for the next three highest-ranking methods: Hierarchical-3DGS, Taming-3DGS, and 3DGS.
These results are organized by scenario to facilitate direct comparison.
Collectively, the visuals confirm that the benchmark table above accurately reflects actual method performance.

Please note that all video playback is accelerated to 7× the actual robot speed and resized to 480 × 270.

Video Sync

📷 Click on video to play or pause 📷

[Lighting Variance] 06:00 AM

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS

[Lighting Variance] 11:00 AM

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS

[Lighting Variance] 04:00 PM

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS

[Lighting Variance] 09:00 PM

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS

[Growth Span] Day 6

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS

[Growth Span] Day 13

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS

[Growth Span] Day 20

Ground Truth
Hierarchical-3DGS
Taming-3DGS
3DGS
×


BibTeX

@article{jeong2025agrichrono,
        title={AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot},
        author={Jeong, Jaehwan and Vu, Tuan-Anh and Jony, Mohammad and Ahmad, Shahab and Rahman, Md. Mukhlesur and Kim, Sangpil and Jawed, M. Khalid},
        journal={arXiv preprint arXiv:2508.18694},
        year={2025},
}

Acknowledgments

We would like to thank the NerfBaselines Team for providing the open-source code for benchmarking. This work was supported in part by the US Department of Agriculture (grant numbers 2024-67021-42528 and 2022-67022-37021), the Culture, Sports, and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture, Sports and Tourism in 2024 (International Collaborative Research and Global Talent Development for the Development of Copyright Management and Protection Technologies for Generative AI, RS-2024-00345025), and the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2019-II190079, Artificial Intelligence Graduate School Program, Korea University).